ON THE USE OF RELAXATION PARAMETERS IN HYBRID
SMOOTHERS *

ULRIKE MEIER YANG

Abstract. The use of relaxation parameters in hybrid smoothers within AMG is analyzed both
theoretically and practically. Optimal relaxation parameters are determined. The implementation
of a procedure to automatically determine an optimal outer relaxation parameter for symmetric
positive definite smoothers is described. Numerical results are presented, which show significant
improvements over AMG with undamped hybrid smoothers.

1. Introduction. With the advent of large high performance computers with
large number of processors, it has become necessary to design parallel algorithms
of all sorts. Particular emphasis has been placed on the development of scalable
algorithms, such as multigrid methods. With this in mind, the parallelization of
algebraic multigrid, a method that can be applied to a linear system, Az = b, without
additional knowledge, such as the underlying finite elements or a grid, has become very
important. AMG proceeds by determining a subset of the original degrees of freedom
through a coarsening algorithm, a restriction operator that transfers vectors from the
fine space to the coarse space, and an interpolation operator that transfers vectors
from the coarser space to the finer space. One important component of AMG is the
smoother. A good smoother will reduce the oscillatory error components, whereas the
“smooth” error is transferred to the coarser grids. Although the classical approach
of AMG focused mainly on the Gauss-Seidel method [7], the use of other iterative
solvers as smoothers has been considered [3, 2].

Gauss-Seidel has proven to be an effective smoother for many problems, however
its main disadvantage is its sequential nature. On the other hand, highly parallel
smoothers such as Jacobi or block-Jacobi often fail, unless an appropriate smoothing
parameter is used and even then their convergence is often slow. Additionally, the user
is faced with the challenge on how to choose an appropriate smoothing parameter.
Many efforts to parallelize Gauss-Seidel have been made. Possible variants include the
use of multi-coloring techniques [1] or hybrid schemes [6]. Multi-coloring techniques
are a nuisance to implement and can be inefficient, if too many colors are involved
(which is most likely to happen on the coarser levels of AMG). Hybrid schemes use
an iterative method, e.g. Gauss-Seidel on each processor, but update in a Jacobi-like
approach across boundaries. They are equivalent to block Jacobi methods that use one
or more iterations of a smoother within each block instead of a direct solve. Clearly,
this approach is very suitable for parallel processing, however, just like the block
Jacobi method, it often requires a suitable smoothing parameter for convergence.

In this paper, we investigate the use of relaxation parameters in hybrid smoothers.
There are two types of relaxation parameters: the smoothing parameter, mentioned
above, which will be denoted the outer relaxation parameter, wy; and the so-called
inner relaxation parameters, w;, which occur, if we smooth locally, on processor i,
using SOR or its symmetric variant, SSOR. For both cases, the question is how to
determine good parameters. Additionally, since one deals with a new system on each
level of AMG, the development of an automatic procedure to determine such param-
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eters is important. Since the outer relaxation parameter affects the matrix across all
processors, it appears that this parameter would be more crucial in improving con-
vergence (or leading to convergence in cases of divergence). Therefore our main focus
will be on the determination of an optimal w;. However, this paper also contains
some results on the use of inner relaxation parameters.

In Section 2, we give some basic definitions. In Sections 3 through 5 we present
conditions, under which the smoothing properties are fulfilled. Section 4 focuses
specifically on the outer relaxation parameters and presents the determination of op-
timal parameters. Section 5 analyzes the use of inner relaxation parameters. Section
6 describes a procedure to determine outer relaxation parameters automatically, and
in Section 7, we present numerical results that show that this approach can lead
to significant improvements or even convergence in cases, for which AMG with an
undamped hybrid smoother does not converge.

2. Definitions. Since our goal is to solve the linear system Ax = b on a parallel
computer with p processors, we partition the linear system as follows:

A .. Alp X1 b1
(2.1) A= . e . _
A A

pl pp Lp by

A general definition of a smoother based on a splitting @ — (Q — A) of A is

(2.2) Quni1 =b+(Q — A)un

where @ can be any matrix. For example, with Gauss-Seidel Q = D — L, where D is
the diagonal matrix with the diagonal of A and —L the strict lower triangular part
of A, while for Jacobi Q = D. Since we are interested in parallel smoothers, we will
only consider splittings of the form

Q1
(2.3) Q- @
Qu

This is equivalent to performing any iterative solver such as Gauss-Seidel or block
Gauss-Seidel, etc, locally on each processor, but updating the unknowns that are
located on the neighbor processors only after each iteration step. Specific examples
for hybrid smoothers are hybrid Gauss-Seidel with Q = Dy — Ly, or hybrid symmetric
Gauss-Seidel with Qi = (Dy, — Ly) Dy, ' (Dy, — LY).

As mentioned in the previous section, there are two types of relaxation pa-
rameters, the outer relaxation parameter wjy, and the inner relaxation parameters
w;i, it = 1,...,p. Therefore consider the following smoothing matrix with outer relax-
ation parameter w

(2.4) Q=—Q-—



Inner relaxation parameters, wy, k = 1, ..., p occur in hybrid SOR with @ defined
as above and

~ 1
(2.5) Qr=—Dy — Ly
wr,

as well as the corresponding symmetric variant, hybrid SSOR, with

Wi

(2.6) Qr =

1 1
— Dy — LD (— Dy, — LY).
27%(% k — L) Dy (Wk K — Li)

Further notations needed include the spectral radius of a matrix A, p(A), and the
smallest eigenvalue of a matrix A, A\jin(A).

3. Smoothing Properties. Denote by A™ the operator on the m-th level of
AMG, P™ the interpolation operator that interpolates from the (m + 1)th level to
the mth level, and R™ the restriction operator, that transfers from the mth to the
(m + 1)th level, which in general, if A™ is symmetric, is defined as R™ = (P™)T.

Then the coarse grid correction operator is given by

T" =1—R™A™)~ 1 pmA™,
We define the smoothing operator on the mth level of AMG as
Gm =T (Qm) A,

where @™ is the matrix defined by the relaxation process Q™ uy,+1 = 0™+ (Q — A)u,,.
Important conditions for convergence of algebraic multigrid methods are the
smoothing properties

(3.1) IG™e™ [ < lle™F = oulle™|3 o1 >0,
(3-2) IG™e™ T < lle™ [} = o2 G™e™ |5 o2 >0,

with the following norms
(3-3) Izl = (2" A™2)7,  lafla = (7 (A™)T(D™) T A™a) 2,

where D™ is the diagonal part of A™. Here (3.1) refers to postsmoothing, (3.2) to
presmoothing. In conjunction with the approximation property

(3-4) IT™e™ 17 < Blle™ |3,

either (3.1) or (3.2) imply two-level convergence with the convergence factor bounded
above by v/1 — d; for (3.1) and by 1/+/1 + 02 for (3.2), with §; = 01/0 and d3 = 02/0.
This shows that larger o1 and o5 will lead to better smoothing and ultimately better
convergence. For a more detailed discussion on convergence see [7, 8].

Obviously, the approximation property is determined by the choice of interpola-
tion and restriction, and therefore of no concern for us in this context, in which we
only focus on smoothing.

Now according to [7], (3.1) and (3.2) are equivalent to the following inequalities,
which are somewhat easier to deal with (for simplicity, the indices m will be omitted
in the remainder of the paper)

(3.5) 01e7QTD Qe < T (QT + Q — A)e,

(3.6) o2e (Q — A)TDHQ — A)e < T (QT +Q — Ae.
3



If A is a symmetric positive matrix, then the matrix Q + Q7 — A is symmetric
positive definite if and only if A = Q —(Q — A) is a splitting that leads to a convergent
iterative method, i.e. p(I — Q7 1A) < 1, see [9]. Using this fact it is easy show that
both smoothing properties can always be fulfilled.

THEOREM 3.1. Assume A and D are symmetric positive and Q is a matriz, for
which p(I — Q7 1A) < 1.

Then both smoothing properties (3.5) and (3.6) are fulfilled with

)\mzn(Q + QT - A)
37 7T QTD Q)

and

/\mz’n(Q + QT - A)
(38) 7= Q- ATDIQ - A)

Proof:
Let us assume for simplicity that e”e = 1. Since Q+ Q7T — A is symmetric positive
definite, all its eigenvalues are real and positive and therefore

T Q+ QT — Ae > Mnin(Q + QT — A).

The matrices QT D~1Q and (Q — A)TD~1(Q — A) are symmetric positive semidefinite
and thus have real nonnegative eigenvalues. The following inequalities hold

e"QTD™Qe < p(QTDT'Q),
Q- A)"DTHQ — A)e < p((Q - A)TDTHQ - A)),

and one obtains inequalities (3.7) and (3.8) for o1 and os.
g.e.d.

Thus, if the underlying iterative scheme is convergent, the smoothing properties
are fulfilled. Further, it is easy to come up with a sample vector e, for which the
properties are not fulfilled, if the method does not converge. The theorem also ex-
plains, why hybrid smoothers fail: for many problems, as can be seen in Section 7,
p(I —Q7tA) > 1, or, equivalently, p(Q~1A4) > 2.

However, the estimated bounds for o7 and o9 are not very useful if one wants to
determine good relaxation parameters. Therefore, we investigate symmetric positive
definite ) and derive more meaningful bounds for ¢y and os.

THEOREM 3.2. Assume that A, Q and D are symmetric positive definite and

p(Q71A) <2.
Then the smoothing property
01e7QTD™ Qe < T(Q 4+ QT — A)e
is fulfilled with

2-p(Q'4)
(39) g1 S p(D——lQ)



Proof:

01e"Q"D'Qe + " Ae < 01p(DT'Q)e" QT e + p(Q T A)e” Qe
= (o1p(D7'Q) + p(Q™"A))e" Qe
< 2eTQe
=e"(Q" + Q)e.

g.e.d.
A similar results is obtained for the second smoothing property (3.6).
THEOREM 3.3. Assume that A, Q and D are symmetric positive definite and

p(Q71A) < 2.
Then the smoothing property
o3¢’ (A= Q)"DHA-Qle <" (Q+ QT — A)e
is fulfilled with

2-p(Q'4)
(310) 75 D QI - Q AT

Proof: First let us consider p((I — Q 1A)D~1(Q — A)). Also, let ||.||s denote
the spectral norm or 2-norm.

(I -Q7'AD™'QUI - Q7'4))

p((I = Q1 A)DH(Q — A)) = p(
=p(Q*(I - Q'A)Q™IQIDTIQU - QT A)QF)
=p((I - Q 2AQ™%)QEDIQ (I - Q2 AQ™?))
=D 2Q3(I - Q 2AQ ?)|%
<|ID7EQ I - QT AQ %%

|
— p(D7IQ)[p(I — QA2
Using this result, we get

o2el (A= Q)'D™HA - Q)e+eTAe < oop(Q T(A—-Q)TD 1A - Q))e" Qe + p(Q 1 A)e” Qe
< oop(D7'Q)[p(I = QT A)Pe" Qe+ p(Q 1 A))e" Qe
< 2¢TQe
=e7(QT + Q)e.

q.e.d.

4. Determination of an Optimal Outer Relaxation Parameter. In this
section, an optimal outer relaxation parameter is determined, using the results of the
previous section.

Using (2.4), (3.9) can be expressed as

< wy(2 —wsp(Q 1 A))

D 'O
1I£g§pp( r Qk)
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and (3.10) as

wy(2 —wsp(QLA))

< D_1 ~ I "71A 2°
ax (D Qu)lp(I —wsQ™  A)]

Since o1 and oy are positive, one obtains the following condition for w:
2
o(QA)
Note that in the case of inner relaxation parameters wg, for 1 < k < p, the value of

wy depends on the choice of these parameters.
In order to maximize o in (3.5), one must choose

O<wy <

1

)

which leads to

1
01<

T p(DIQ)p(QLA)

Consider now the second smoothing inequality (3.6). Note that since w; > 0 and

both Q and A are symmetric positive definite, so are @ and Q2 AQ . Therefore

p(I—wsQ 7t A) = p(I —w,Q 2 AQ™?)
o 2
_ 1— CL)JAmsz(lQ 1A> fOI‘ O <w< p(Q_lAg n Amin(@_lA)
el @EAL o T T d G TA)

The optimal w; can now be determined by maximizing

w2 —wp(Q 1A w2 —wp(Q 1A
difw) = 2= wp@ A ) 2o enQ )
(1 = wAmin(Q71A))? (1 -wp(Q'A))?
with respect to w. y
If p(Q 1 A) > 2Xin (Q~ L A), which is usually the case for finite element problems,
the solution to maximizing ¥ (w) is

which leads to

oo <

T p(DTIQ)(P(QTTA) — 2Anin(QTLA))

Since in general for finite element problems )\min(Q’lA) is small compared to the
largest eigenvalue, the best choice for the first smoothing property (4.1) is also a good
choice for the second smoothing property with

O .
p(D71Q)(p(Q7TA) = Apin(Q71A))?

6
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9(w) is decreasing in the considered range, consequently it is maximal for

(4.2) W= = 2 =
Amin (@71 A) + p(Q1A)
with
o9 S 4>\mzn(Q71A)

P(D1Q)(P(Q™LA) = Mnin(Q~1A))?
Clearly if

4>\min (QilA) < P(QilA)

(4.1) is a better choice for w; than (4.2). Note that (4.2) minimizes p(I — wQ~'A)
and leads therefore to the fastest convergent splitting, but does not lead to the best
smoother!

5. Analysis of the Inner Relaxation Parameters. Inner relaxation parame-
ters occur when one uses SOR or SSOR locally on each processor. Determining a best
choice for the inner relaxation parameter in SSOR is a very difficult task. Even in the
case of only one processor, one needs to analyze the following complicated functions

w2 w)2 w2 )o(Qw) 1 4)
e AD10w)) |
w2~ 0)(2 = wl2 - 0)p(Ow) ' A)

p(D7IQW) (I — w(2 —w)Q(w) 1 4))?

Although there are some interesting results on the choice of relaxation parameters
for SSOR as an iterative solver in [9], these results do not transfer to smoothers, and
applying the same techniques to analyze the parameter gives nonconclusive results.
However, one can derive some interesting results for SOR and hybrid SOR.

LEMMA 5.1. Assume A is symmetric positive definite, Q = %D — L, where D is
the diagonal and —L the lower triangular part of A, and 0 < w < 2.

Then

P2(w) =

01e7QTD Qe < T (QT +Q — Ae.

with
2 _
g1 S ( w)w )

(1 +wy7 )1 +wyt)
where

v~ =ID7L,

v =D,
and ||| denotes any vector induced matriz norm.

In the above estimate, the upper bound is mazximal, if

VAN 4D -1
YE+y+2yyt T
7




Proof:
Since @ = 1D — L,

Q+QT —A= %D—L—LT—D+L+LT:(%—1)D
Now
e'QTD Qe < p(D'QTD7'Q)e” De
and

p(DT'QTDTIQ) < |IDTIQT| |DT'Q)

1 _ 1 _
=|=I-D7'LT|||—1 - D7'L]|
w w
1 _
< F(1+W’Y+)(1+W’Y )

This leads to the following inequality for oy

(2 —ww

1SN = T o)

Now,

dpr(w)  2—2w— (v~ +9" + 2y y")w?
dw (T4 wy™)2(1 4+ wyt)?

)

which vanishes for

—/BrF D@+ D -1

wi = <0
' Y+ + 2yt
and
o — VTt +1)(2y +1) -1
? Yr+yT + 2yt
Since
Por(wz) V2D +1) “0
dw? (1 4+ woy™)2(1 + wayt)? ’

and the relative minimum w; is outside of (0,1), we is the maximum of ¢; (w) in (0,2).
Since

_ _ 1 _
P+ + 291y =§((27++1)(27 +1)—1)

it is easy to show that ws < 1.



This result is interesting, since it shows that the best w in this context does not
lead to overrelaxation, as is the case when SOR is used as an iterative solver, but to
underrelaxation. In the special case y* = v~ = ~, one obtains w = m < 1.

Note that Ruge and Stiiben [7] suggest the norm

1<i<n

1 n
|Ally = max ;Zvﬂ%\
ii=

where v is a vector with positive elements v;. This choice leads to

Y= ka|ak3 )

vkakk

7= Z Ukl ak;]

Ve a
k kk]>k

Using a similar argument, one can show that the second smoothing property (3.6)
is also fulfilled for SOR.

LEMMA 5.2. Assume A is symmetric positive definite, () = %D — L, where D is
the diagonal and —L the lower triangular part of A, and 0 < w < 2.

Then

o2 (Q — A)TD Q- Ae <" (Q+ Q" — Ae
with

(2 —w)w
(L =wl+wy )L —wl+wyt)

o2 <

The upper bound is maximal in most cases if w = 1. For

1 v~
5.1 > N —
(5.1) L TR e

the optimal w is given by

V-2 -1 -1
(5.2) W= e <L

The proof is similar to the proof of Lemma 5.1. The inequality for o is determined
in a similar way as was done for 7 in Lemma 5.1. In order to determine the best w,
one needs to examine

(2 —ww
p2(w) = (1+w(7_—(12(1+w(~y+_1)) for 0<w<1

@O ) - Dy o TEes?

In most cases it turns out that this function is increasing in (0,1) and decreasing
n (1,2), which shows that the optimal w is 1. Only in the special case 2y*ty~ >
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4T 4+~7, is the absolute maximum in (0,1) and is as given by (5.2) by straightforward

differentiation of ¢o(w).

In this case it appears that the use of a relaxation parameter is, in general, not
beneficial. Only if conditions (5.1) are fulfilled, which imply a matrix that is not

diagonally dominant, should underrelaxation lead to better convergence.
In the following theorem, the SOR hybrid method is investigated.

THEOREM 5.3.

Assume that A is symmetric positive definite, Dp the block diagonal matriz with
diagonal blocks Agy, Q = w—lJQ as defined in (2.4), Qr = kaDk — Ly with 0 < wy, < 2

_ 1
fork=1..pand0<wy < SDTA)

Then the smoothing property
01e7QTD Qe < e(Q 4+ QT — A)e

is fulfilled for
2 —
o1 < wy min ( W)k —
1<k<p (1+ wryy, )+ WYy, )
with
1
v =D L,
T = HDk L],
where ||.|| denotes any matriz norm, induced by a vector norm.
Proof:

Lemma 5.1 leads to the following inequality for o;

(2 —wi)wi
T (4w Fwiy)

Now

1
el Ae < p(DglA)eTDBe < —e"Dpge

wJ
using the assumption wy < m. We thus obtain
B
T 1 ¢ 2 T T
QT +Q — A :—Ze —D; —L;—L;)e; — e Ae
wy
i=1
1 &2 1
= — Z —— TD e + —eTDBe —eT Ae
W =1 Wi wJ
1 P ~T 1 -1 T
Z Ze Q +Qz_ zz)ei*’(i_p(DB A))e Dge
Wy
z*l
1 & (2 — w;)w; AT 1 A
> — €, - D i€
T wy z_: (1+wiy )+ wing') Febe
i=1 i i
> (2 _wi)wi eTQTD—lQe

wy min
T1<i<p (14w ) (1 +wiyh)
o1el QT D71 Qe.

vV
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This shows that a good choice of inner relaxation parameters should improve
the hybrid SOR method, but even more crucial is a good choice of w; for (3.5) to be
fulfilled. The best choice according to this theorem, is w , 1/p(D§1A). It is possible to
obtain a good estimate of p(D,}lA) using the procedure described in the next section.
However, this approach would be very expensive and is therefore not practical, since
it requires solving a linear system on each processor in each CG iteration step.

6. Practical Determination of the Outer Relaxation Parameter. The
result on the optimal outer relaxation parameter obtained in Section 4 is only useful
if it can be applied in practice. It is very important to get good estimates for p(Q_lA).
This can be achieved by applying & steps of preconditioned conjugate gradient to Ax =
b with the preconditioner (. Note that Q needs to be symmetric positive definite.
The preconditioning step is here just the application of one sweep of the smoother,
which is fairly inexpensive. Due to the relationship of the conjugate gradient method
and the Lanczos method [5], one can derive the tridiagonal Lanczos matrix T}, from
the parameters obtained within CG as follows [5].

In the mth iteration of CG one computes the parameters

7"]{_1@_177@—1

7‘%,2@_17‘1@72

rz_lQ_lrk—l

6.1 Oy =
(6.1) pt Apy,

) 5m:

with the residual 7, and the direction vector p,,, which in turn give

d1 C1
C1 d2
(6.2) Ty =
Ck—1
Ck—1  dg
where
m 1 vV Pm
Am—1 A A

Since the eigenvalues of T}, approach the eigenvalues of Q~*A with increasing k, one
can estimate the eigenvalues of T}. This can be done using the Gershgorin estimate
maxi<m<k{|dm|+|cm|+ |em-1]}, or, since T}, is very small, using an eigenvalue solver
for tridiagonal systems (such as the QR algorithm or bisection [5]). It is possible to
get good estimates with this procedure with a fairly small number of CG iterations,
eg. k = 10 or k = 15. The use of this procedure increases the setup time of
AMG. However, for problems that require a good smoothing parameter, the resulting
decrease in number of iterations and solve time far outweighs this increase in setup
time, as can be seen in the next section.

7. Numerical Results. The methods described in the previous sections are ap-
plied to various very large 3-dimensional elasticity problems composed of 3 concentric
spherical shells. An octant of this domain is shown in Figure 7.1. The outer shells are
composed of steel, the inner shell is composed of lucite. We consider problems with-
out and with slide surface boundary conditions. In the case of slide surface boundary
conditions the steel and lucite spheres are allowed to slide tangentially relative to each
other. Adding the slide surface boundary conditions leads to an indefinite problem.
It is, however, possible to reduce the system to a positive definite system through
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Fic. 7.1. Finite element discretization of a sphere using quadrilateral elements.

the elimination of a subset of equations [4]. In our experiments we use the reduced
system. The problems were run on the ASCI White Computer at LLNL. Two dif-
ferent problem sizes are considered: the smaller problem is 497,664 elements and is
run on 32 processors; the larger problem consists of almost 4 million elements and
is run using 256 processors. Since the considered problem has multiple degrees of
freedom per grid point, we use AMG for systems problems, employing the function,
or “unknown”, approach [7]. This approach coarsens each physical variable sepa-
rately and interpolates only within variables of the same type. The smoothers are
symmetric Gauss-Seidel with w; = 1 and the optimal w; in (4.1), which is obtained
using at most 10 CG-iterations. We are able to use a nodal hybrid Gauss-Seidel, i.e.
a block Gauss-Seidel method with 3x3 blocks, due to the structure of the problem.
Unfortunately, the nodal structure is destroyed after the first level, so use of a nodal
smoother beyond the finest level does not make sense. The optimal w; was here
estimated with 15 CG-iterations, since 10 CG-iterations turned out to be not good
enough. We also consider hybrid SSOR. Since we have no procedure to determine
the best inner relaxation parameters, we present results for uniform w = 0.75, 0.5
and 0.25 for the moderate size problem and use w = 0.5 for the large problem. In all
these experiments, AMG is used as a preconditioner for CG. Therefore, in order to
not destroy the symmetry of the problem, only symmetric smoothers are used.

Table 7.1 gives the estimates of the optimal outer relaxation weights that have
been used for the larger elasticity problems. The fact that the relaxation parameters
on the finer levels are smaller than 0.5, and thus p(@‘lA) > 2, indicates that hybrid
(block) Gauss-Seidel is not a convergent iterative scheme for these problems. Table
7.2 contains the notations used for Tables 7.3 through 7.6. Q denotes the symmetric
Gauss-Seidel matrix, and Qp denotes the nodal or 3x3 block Gauss-Seidel matrix.

For moderate size problems, Table 7.3 shows a fairly small improvement of scaled
smoothers over unscaled smoothers. However, for large problems, Table 7.4 shows
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without slide surfaces with slide surfaces
level wy level wy level Wy level wy

1 0.425 12 | 0.588 1 0.465 12 | 0.588
2 0.458 13 | 0.585 2 0.462 13 | 0.584
3 0.480 14 | 0.591 3 0.453 14 | 0.605
4 0.460 15 | 0.614 4 0.453 15 | 0.612
5 0.498 16 | 0.604 5 0.502 16 | 0.627
6 0.555 17 | 0.603 6 0.556 17 | 0.639
7 0.585 18 | 0.601 7 0.580 18 | 0.613
8 0.567 | 19 | 0.587 8 0.588 19 | 0.620
9 0.585 9 0.583

10 0.570 nodal: 10 0.585 nodal:

11 10572 1 [0397 ]| 11 [ 0575 | 1 [0.419

TABLE 7.1
Relazation parameters for an elasticity problem, 3,981,312 elements, 256 procs

a significant improvement for scaled smoothers. Overall, the best time achieved is
about 10 times as fast as the original test (which uses hybrid Gauss-Seidel without any
relaxation parameter). Interestingly enough, it turns out that for this problem, the
use of the nodal smoother does not improve convergence; apparently point smoothers
are sufficient to smooth the error.

Table 7.5 shows this changes when we include slide surfaces. On the moderate
size problem, using hybrid SGS without any smoothing parameter converges in 390
iterations, whereas scaled SGS converges about 3 times as fast. It is interesting
that just applying the nodal smoother without any scaling parameter entails a similar
number of iterations, showing that for this problem a nodal smoother is more suitable.
Scaling the nodal smoother leads to a further improvement of another factor of about
2.3. Scaling the point smoother improves this result only slightly. Reducing the
number of sweeps increases the number of iterations, but decreases the time per
iteration. The best result is about 7 times faster than the original solver.

The larger problem with slide surfaces diverges without any relaxation param-
eters, even when a nodal smoother is used on the finest level (Table 7.6). Scaled
SGS converges within 192 iterations, but convergence is twice as fast when a scaled
nodal smoother is used on the finest level. The overall fastest (with regard to time)
combination solves this very large problem, which diverges when unscaled smoothers
are employed, in about 5 minutes.

The results in Tables 7.3 through 7.6 show that a good inner relaxation parameter
for hybrid SSOR is 0.5. Overall, underrelaxation, i.e. choosing an inner relaxation
parameter smaller than 1, beats hybrid SGS, which is equivalent to hybrid SSOR
omega = 1. Overrelaxation (w > 1), which is not presented here, leads to a further
decrease in performance.

8. Conclusions. The use of relaxation parameters for hybrid smoothers is ana-
lyzed. Both outer as well as inner parameters are considered. Analysis of the inner
SOR relaxation parameter show that, in most cases, underrelaxation (i.e. w < 1) is
preferred to overrelaxation. The optimal outer relaxation parameter for symmetric
positive definite matrices and splittings is determined, and an automatic procedure to
determine it is implemented. Numerical experiments show that for certain elasticity
problems significant improvements can be achieved using relaxation parameters.
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Smoother Description

G hybrid symmetric Gauss-Seidel (SGS)

S, w hybrid SSOR, wy =w for k=1,....p

SG scaled hybrid SGS, w; = m

N hybrid nodal (3x3 blocks) SGS

SN scaled hybrid nodal SGS, wy = —=2—
ARy A)

<S1>/<S2> | <S1> used only on finest level,

<82> used on coarser levels

TABLE 7.2
Smoother notations

Smoother | no. of | no. of | setup | solve | total
sweeps its time | time | time

G 2 74 15 266 281
S, 0.75 2 63 15 233 248
S, 0.5 2 45 15 164 179
S, 0.25 2 54 15 197 | 212
SG 2 42 25 157 182
N/G 2 59 16 223 240
SN/G 2 39 22 | 148 | 170
SN/G 1 47 22 108 130
SN/SG 2 41 28 161 189
SN/SG 1 50 28 119 148

TABLE 7.3
Elasticity problem without slide surfaces, 497,664 elements, 32 procs, n = 1,545,483
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Smoother | no. of | no. of | setup | solve | total
sweeps its time | time | time
G 2 484 25 2097 | 2122
S, 0.5 2 67 25 301 326
SG 2 61 38 270 308
N/G 2 562 25 2477 | 2502
SN/G 2 57 32 258 290
SN/G 1 67 32 184 216
SN/SG 2 60 41 276 317
SN/SG 1 71 41 196 237
TABLE 7.4

Elasticity problem without slide surfaces, 3,981,312 elements, 256 procs, n = 12,152,595

Smoother | no. of | no. of | setup | solve | total
sweeps its time | time | time
G 2 390 15 1427 | 1443
S, 0.75 2 201 15 750 765
S, 0.5 2 149 15 555 570
S, 0.25 2 185 15 696 711
SG 2 135 26 517 543
N/G 2 142 17 547 564
SN/G 2 63 23 245 268
SN/SG 2 60 31 237 267
SN/SG 1 74 31 181 212
TABLE 7.5

Elasticity problem with slide surfaces, 497,664 elements, 32 procs, n = 1,587,825

Smoother | no. of | no. of | setup | solve | total
sweeps its time | time | time
G 2 fail 23 - -
S, 0.5 2 342 23 1375 | 1399
SG 2 192 37 767 804
N/G 2 fail 27 - -
SN/G 2 146 29 600 630
SN/SG 2 86 41 365 406
SN/SG 1 106 41 272 313
TABLE 7.6

Elasticity problem with slide surfaces, 3,981,812 elements, 256 procs, n = 12,320,217
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